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a b s t r a c t

In multivariate spatio-temporal analysis, we are faced with the
formidable challenge of specifying a valid spatio-temporal cross-
covariance function, either directly or through the construction
of processes. This task is difficult as these functions should
yield positive definite covariance matrices. In recent years, we
have seen a flourishing of methods and theories on constructing
spatio-temporal cross-covariance functions satisfying the pos-
itive definiteness requirement. A subset of those techniques
produced spatio-temporal cross-covariance functions possessing
the additional feature of nonstationarity. Here we provide a
review of the state-of-the-art methods and technical progress re-
garding model construction. In addition, we introduce a rich class
of multivariate spatio-temporal asymmetric nonstationary mod-
els stemming from the Lagrangian framework. We demonstrate
the capabilities of the proposed models on a bivariate reanalysis
climate model output dataset previously analyzed using purely
spatial models. Furthermore, we carry out a cross-validation
study to examine the advantages of using spatio-temporal mod-
els over purely spatial models. Finally, we outline future research
directions and open problems.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The importance of multivariate spatio-temporal geostatistical models is far-reaching and in-
terdisciplinary in nature. Theoretical developments in the field of geostatistics have provided
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frameworks and tools for several important applications. Traditionally, geostatistical models were
used to produce high-quality mappings of heavy metal contamination, ore deposits, pollutants, sand
distribution in shelf seas, temperature, vegetation, to name a few. They were, and still are, needed
to accurately model predictor variables, such as precipitation, the importance of which cannot be
overlooked as these predictors serve as key input conditions for running physical models, such
as those in hydrology and geomorphology. Constructions of full-coverage high-resolution maps of
forest composition are made possible by augmenting the collected remotely sensed light detection
and ranging (LiDAR) data with geostatistical modeling techniques (Taylor-Rodriguez et al., 2019).
Today, as the field experiences phenomenal research progress, more advanced models are becoming
the norm. Specifically, the geostatistics community witnessed research advances in the field of
multivariate spatio-temporal modeling. The rationale for turning significant research efforts in this
direction is rooted in the fact that data are almost always multivariate, spatial, and temporal.

Consider a multivariate spatio-temporal random field Z(s, t) =
{
Z1(s, t), . . . , Zp(s, t)

}⊤, such
that there are p variables at each spatio-temporal location (s, t) ∈ Rd

× R, d ≥ 1. Operating
under the Gaussian multivariate random field assumption, the stochastic behavior of Z(s, t) is fully
described by its mean vector µ(s, t) = E {Z(s, t)} and (nonstationary) cross-covariance structure
C(s1, s2; t1, t2) =

{
Cij(s1, s2; t1, t2)

}p
i,j=1, where Cij(s1, s2; t1, t2) = cov

{
Zi(s1, t1), Zj(s2, t2)

}
, s1, s2 ∈

Rd, t1, t2 ∈ R, for i, j = 1, . . . , p. Because of this property, multivariate spatio-temporal geostatistics
is heavily focused on specifying appropriate spatio-temporal cross-covariance functions, Cij. The
resulting spatio-temporal covariance matrix has to be positive definite, i.e., for any n ∈ Z+, for
any finite set of points (s1, t1), . . . , (sn, tn), and for any vector λ ∈ Rnp, we have λ⊤Σλ ≥ 0, where
Σ is an np×np matrix with n×n block elements of p×p matrices C(sl, sr ; tl, tr ), l, r = 1, . . . , n, with
n indicating the number of spatio-temporal locations. A valid cross-covariance function ensures the
(np× np)-dimensional covariance matrix of the np-dimensional vector

{
Z(s1, t1)⊤, . . . , Z(sn, tn)⊤

}⊤

to be positive definite.
Without loss of generality, assume µ(s, t) = 0, for all s and t . A multivariate spatio-temporal

random field is (weakly) stationary if its spatio-temporal cross-covariance function Cij(s1, s2; t1, t2)
simplifies to Cij(h, u), where h = s1 − s2 and u = t1 − t2, for i, j = 1, . . . , p. This means that
the cross-covariance between variables i and j depends only on the vector of their separation in
space and time, and that this value does not change regardless of their locations in space and time.
If the cross-covariance depends only on the magnitude of their separation, then Cij(s1, s2; t1, t2)
further simplifies to Cij(∥h∥, |u|), where ∥h∥ = ∥s1 − s2∥ and |u| = |t1 − t2|, for i, j = 1, . . . , p. A
multivariate spatio-temporal random field with such spatio-temporal cross-covariance structure is
termed isotropic.

Multivariate geostatistics offers the tool of co-kriging which one can use in interpolating
and predicting a variable, possibly undersampled, given its spatio-temporal relationship to other
oversampled variables. In co-kriging, formally, the goal is to predict Z(s0, t0) at an unobserved
spatio-temporal location s0 ∈ Rd and t0 ∈ R, given Z =

{
Z(s1, t1)⊤, . . . , Z(sn, tn)⊤

}⊤. Under the
squared-error loss criterion, the simple co-kriging predictor of Z(s0, t0) is the best linear unbiased
predictor Ẑ(s0, t0) = E {Z(s0, t0)|Z(s1, t1), . . . , Z(sn, tn)} with the form Ẑ(s0, t0) = ∆⊤

0 Σ
−1Z, where

∆0 = {C(s0, s1; t0, t1), C(s0, s2; t0, t2), . . . , C(s0, sn; t0, tn)}⊤.
The rest of the paper is organized as follows. An overview of the state-of-the-art advances in

the field of multivariate spatial and spatio-temporal geostatistics is presented in Sections 2 and
3, respectively, focusing mainly on results that appeared after the review of Genton and Kleiber
(2015). A specialized class of multivariate spatio-temporal models, based on transport, is described
in Sections 4 and 5. In Section 6, the paper transitions from surveying recent works to the creation of
newmultivariate spatio-temporal nonstationary models. Section 7 illustrates the performance of the
new models on a regional climate model output bivariate dataset. Section 8 outlines the theoretical
challenges and practical considerations when the spatial locations are defined on a sphere and
newly established models on the sphere are provided. Section 9 concludes with a discussion on
new research avenues and remaining challenges.
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2. Purely spatial models

Having established the setup of the multivariate spatio-temporal random field, we begin to
highlight recent studies, starting with multivariate purely spatial models, and then proceeding with
the spatio-temporal ones. For the purely spatial discussions, we use the same notations as above
and simply suppress the temporal argument in the observations and set u = 0 for the temporal
argument in the cross-covariance function.

2.1. Spatial stationary cross-covariance functions

Genton and Kleiber (2015) reviewed three general methods of constructing stationary cross-
covariance functions from existing univariate stationary covariance functions: the linear model
of coregionalization (LMC), convolution methods, and latent dimensions. The LMC considers the
multivariate process as a linear combination of uncorrelated univariate spatial processes. One major
shortcoming of this model is that it lacks flexibility as it bestows on all variables the smoothness
of the roughest underlying univariate spatial process. The convolution methods, on the other hand,
require convolving spatially-varying kernel functions. The resulting cross-covariance function may
or may not have a closed form. Lastly, the latent dimensions approach works by representing the
components of Z(s) as coordinates in a k-dimensional space, 1 ≤ k ≤ p.

Another proposed model is the Matérn stationary cross-covariance function formulated by Gneit-
ing et al. (2010). Additional work on the allowable parameter values for the stationary Matérn
cross-covariance function was carried out by Apanasovich et al. (2012). Cressie et al. (2015) asserted
the use of a multivariate spatial random effects model. Marcotte (2015) developed a non-linear
model of coregionalization (N-LMC), addressing the aforementioned critical drawback of the LMC.
The N-LMC allows for different sets of uncorrelated univariate spatial processes in the marginals and
the cross-covariances. Cressie and Zammit-Mangion (2016) introduced the conditional approach
to model multivariate spatial dependence, with variable asymmetry as an additional feature. They
modeled the cross-covariance structure using univariate conditional covariance functions based on
the partitions of Z(s). Ideally, the partitioning of Z(s) should reflect the causal relationship between
the variables, but this may not be easy to define with many variables. Gnann et al. (2018) proposed
a bivariate correlation model that resembles the LMC, with the form C12(h) = ρ

√
C11(h)C22(h),

where −1 ≤ ρ ≤ 1 is the usual colocated correlation coefficient. Although they did not provide a
proof of its validity, the covariance matrices they obtained were positive definite. Marcotte (2019)
issued some caution regarding the use of that model and provided four counterexamples, one for
each exponential, squared exponential, Matérn, and spherical correlations, where the ordinary co-
kriging variance turned out to be negative. Finally, not unrelated, is the work of Bevilacqua et al.
(2015), where two criteria that compare the flexibility of two different cross-covariance functions
were defined.

New univariate models, such as the modified Matérn of Laga and Kleiber (2017), require mention.
The modified Matérn has a spectral density

f (∥ω∥) =
(b2 + ∥ω∥)ξ

(a2 + ∥ω∥)ν+d/2 , ω ∈ Rd,

where a, ν > 0, b ≥ 0, and ξ < ν. The last condition is in place to make sure that the process has
finite variance. When ξ = 0, one obtains the classical Matérn spectral density. The model presented
above is more flexible than the classical one as the maximum spectrum can occur at a non-zero
frequency. When d = 2, they derived its resulting covariance as follows:

C(h) =
1
2π

(−1)ν

ν!

∂ν

∂(a2)ν
{
(b2 − a2)ξK0 (a∥h∥)

}
, h ∈ Rd,

where K0 is a modified Bessel function of the second kind of order zero. The resulting random
field of this model can exhibit strong periodicities, which the random fields from the Matérn model
of Gneiting et al. (2010) do not possess.
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2.2. Spatial nonstationary cross-covariance functions

The next important advancement is the development of cross-covariance functions that lead to
multivariate purely spatial second-order nonstationary behavior. These models made it possible
to allow the purely spatial cross-covariance structure to depend on the spatial locations. The
models in the previous section are only appropriate when applied to multivariate purely spatial
stationary random fields. When stationarity in the second-order structure is untenable, one turns to
multivariate purely spatial nonstationary models. Models that accommodate nonstationarity in the
cross-covariance structure are more pertinent when studying large spatial domains, as the spatial
second-order nonstationary behavior can be attributed to differing spatial features affecting the
phenomena being investigated. The assumption of second-order stationarity is often reasonable
when one studies a relatively small spatial domain or when one can substantiate that the spatial
features in the whole domain are spatially invariable.

We now mention several studies that advanced the models available for studying multivariate
purely spatial nonstationary behavior. Genton and Kleiber (2015) started the discussion on these
models by highlighting the different nonstationary extensions of the LMC such as that of Gelfand
et al. (2004) and Fouedjio (2018), and the nonstationary multivariate Matérn model of Kleiber and
Nychka (2012). These studies are based on similar approaches, i.e., they use multivariate purely
spatial stationary models as the building blocks of complicated nonstationary models.

Another way of building multivariate purely spatial nonstationary models is to start with valid
univariate purely spatial nonstationary models and extend them to the multivariate case. Hence, it
is not surprising that many advances in univariate purely spatial nonstationary models have been
achieved. A survey of new approaches to building univariate nonstationary covariance functions
was presented by Fouedjio (2017). In addition to the aforementioned survey are other papers
on covariate-driven purely spatial nonstationary models (Risser, 2015; Risser and Calder, 2015),
nonstationary convolution models (Fouedjio et al., 2016), space deformation approach (Sampson
and Guttorp, 1992; Fouedjio et al., 2015; Kleiber, 2016), convolution models incorporating infor-
mation regarding suspected potential sources, for instance pipes or reservoirs, with application
on dosimetric data (Lajaunie et al., 2019), and a nonstationary Matérn model for data affected by
boundaries, holes, or physical barriers (Bakka et al., 2019). Ton et al. (2018) merged principles
from Fourier feature representations, Gaussian processes, and neural networks to create new
nonstationary covariance functions. Multivariate extensions to these models are nontrivial and have
yet to be proposed.

Dimension expansions and covariance functions built as a linear combination of several local
basis functions are two other widely popular univariate nonstationary models with multivariate
nonstationary versions yet to be seen in the literature. Briefly, we propose straightforward exten-
sions of these two approaches in the multivariate arena. Consider the multivariate Karhunen–Loève
expansion (Theorem 5.2.2 of Wang, 2008) of the multivariate purely spatial random field Z(s) =∑

∞

b=1

{
ξb,1λb,1φb,1(s), . . . , ξb,pλb,pφb,p(s)

}⊤, such that ξ = (ξb,1, . . . , ξb,p)⊤ ∼ Np(0, Ip×p), λb,i ∈ R,
and φb,i(s), i = 1, . . . , p, are the local basis functions. The resulting nonstationary cross-covariance
function of this random field is

Cij(s1, s2) =

∞∑
b=1

λb,iλb,jφb,i(s1)φb,j(s2), s1, s2 ∈ Rd.

In a landmark research in nonstationary spatial modeling, Bornn et al. (2012) showed how reduc-
ing the spatial dimensions can cause a nonstationary behavior in the covariance structure. Following
their construction approach, this time with p > 1, consider a multivariate purely spatial non-
stationary random field Z(s) =

{
Z1(s), . . . , Zp(s)

}⊤ such that Z(s, η̃) =
{
Z1(s, η1), . . . , Zp(s, ηp)

}⊤,
where s ∈ Rd, η̃ =

{
η⊤

1 , . . . , η⊤
p

}⊤
∈ Rpd′

, and ηi ∈ Rd′

, d′ > 0, is a multivariate purely
spatial stationary random field, for i = 1, . . . , p. The components i, j of Z(s, η̃), taken at spatial
locations (s1, η1i) and (s2, η2j), after accounting for latent spatial dimensions, have a stationary
cross-covariance Cij

{
(s1, η1i) − (s2, η2j)

}
. The relationship between the stationary cross-covariance

of the purely spatial stationary random field Z(s, η̃), and that of the purely spatial nonstationary
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random field Z(s) cannot be explicitly characterized, except when the cross-covariance function,
Cij, is taken as the squared exponential stationary covariance function. In that case, Cij(s1 − s2) =

Cij
{
(s1, η1i) − (s2, η2j)

}
/Cij(η1i−η2j). This dimension expansion approach allows one to use existing

computationally more tractable multivariate stationary covariance functions on Rd+d′

for data
exhibiting second-order nonstationary behavior on Rd.

Fuglstad et al. (2015) issued a caveat on using purely spatial nonstationary models hastily.
They emphasized that a random field with a seemingly nonstationary second-order structure may
possess that behavior due to an unaccounted nonstationarity in the mean structure. Spurious
nonstationarity results in a misleading covariance structure. It is in the modeler’s interest to
correctly identify the source of the nonstationarity because while nonstationarity in the mean
structure is cheap, nonstationarity in the covariance structure is not.

3. Spatio-temporal models

Combining spatial models with temporal information can tremendously improve modeling
capabilities. The utility of spatio-temporal cross-covariance functions is predicated on the idea that
closer objects tend to behave similarly than those that are distant to each other (Tobler, 1970).
Recently, this principle was recognized to hold when distance is taken with respect to the objects’
locations in time. This sparked enormous interest in building spatio-temporal models. Further, these
models were constructed around the need to characterize the behavior and interaction of multiple
variables as they evolve in space and time. Nevertheless, it is essential to clarify that the focus
of spatio-temporal geostatistics is typically not on the ‘‘how’’ of evolution; it is on describing the
spatio-temporal mechanisms of an underlying process that may have generated the data.

Often, spatio-temporal datasets are modeled in the purely spatial context. When there are
missing data, as temporal information is sometimes limited, one usually resorts to collapsing a
spatio-temporal dataset to a spatial one by taking the spatial location-wise arithmetic mean. This
is a perfectly legitimate approach as long as the scientific question to be answered is purely spatial
in nature. But when the question is spatio-temporal, purely spatial models are insufficient.

3.1. Spatio-temporal stationary cross-covariance functions

The common genesis of many established spatio-temporal stationary cross-covariance functions
is either a purely spatial stationary cross-covariance function or a univariate spatio-temporal
stationary covariance function. A hybrid of these two approaches, the spatio-temporal (space–time)
separable stationary cross-covariance function is arguably the easiest way to build multivari-
ate spatio-temporal stationary models. Given a purely spatial stationary cross-covariance, Cij(h),
and a univariate purely temporal stationary covariance, CT (u), then their product Cij(h, u) =

Cij(h)CT (u), h ∈ Rd, u ∈ R, is a valid spatio-temporal (space–time) separable stationary cross-
covariance function. However, multivariate spatio-temporal (space–time) separable models are
always space–time fully symmetric. Note that any spatio-temporal stationary cross-covariance func-
tion is space–time symmetric, i.e., Cij(h, u) = Cij(−h, −u) for any spatio-temporal lag combinations
(h, u), i, j = 1, . . . , p. A stricter form of space–time symmetry, termed full symmetry, occurs when
Cij(h, u) = Cij(−h, u) = Cij(h, −u) = Cij(−h, −u). Full symmetry means that the cross-covariance
between variable i at site s1, at time t1, and variable j at site s2, at time t2, where s2 = s1 + h
and t2 = t1 + u, is identical to that of variable i at site s1, at time t2, and variable j at site s2,
at time t1. This assumption of full symmetry is known to not hold in reality, especially when
modeling environmental and earth sciences data that are influenced by natural occurring forces,
for example, atmospheric flows. These types of phenomena are so prevalent that their appropriate
models constitute a special subclass and are discussed in a separate succeeding section.

The different spatio-temporal extensions of the stationary LMC offer spatio-temporal separable
stationary cross-covariance models with different types of separability. When the univariate covari-
ances in the LMC are written as a product of two univariate covariance functions, one purely spatial
and the other purely temporal, the LMC model is fully separable. Otherwise, when the univariate
covariances are space–time nonseparable, the LMC model is a variable-separable model. A collection
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of different spatio-temporal stationary LMC is provided in De Iaco et al. (2019), and a list of different
types of separability (full, space, time, and variable, to name a few) is discussed in Apanasovich and
Genton (2010).

Other works on the several adaptations of the multivariate purely spatial Matérn to space–
time were recently contributed in the literature such as Bourotte et al. (2016) and Ip and Li
(2016, 2017). In a Bayesian formalism, Zammit-Mangion et al. (2015) proposed a multivariate
spatio-temporal model by merging stochastic partial differential equations with the spatio-temporal
random field theory. Rodrigues and Diggle (2010) proposed a spatio-temporal extension of the
stationary convolution models.

Book-length discussions recently appeared in the literature on the topic of spatio-temporal
models such as Montero et al. (2015), Christakos (2017), Wikle et al. (2019), and Corzo and
Varouchakis (2019). Christakos (2017) offered an extensive coverage of spatio-temporal geostatistics
from theory to applications in the univariate and multivariate settings. Corzo and Varouchakis
(2019) provided a review of the recently available spatio-temporal univariate models.

3.2. Spatio-temporal nonstationary cross-covariance functions

Again, assuming second-order stationarity in space and in time is a convenient starting point,
however, models that accommodate more realistic assumptions such as second-order nonstation-
arity in space and/or time are needed. These models offer more sophistication than those in the
previous sections. Hence, a very sparse literature on spatio-temporal nonstationary cross-covariance
functions is expected.

Ip and Li (2015) examined the possibility of changing the spatio-temporal covariance structure
depending on the temporal location. The idea is simple and it addresses the problem of second-order
nonstationarity in space and/or time. In their work, Ip and Li (2015) outlined several theorems that
allow the Np×Np matrix, C(·; t1, t2), to assume different parametric forms for any t1 and t2, where
N is the number of spatial locations.

A number of newly developed spatio-temporal nonstationary models were proposed only in the
univariate setting such as the improved latent space approach (ILSA) of Xu and Gardoni (2018). A
spatio-temporal Karhunen–Loève expansion developed in Choi (2014) may be used to construct
covariance functions that are nonstationary in space and/or time. Following the work of Bornn
et al. (2012), Shand and Li (2017) formulated a spatio-temporal dimension expansion approach by
performing a straightforward expansion of the temporal dimension. Again, a multivariate version of
the approach has not yet been proposed and can be done as follows: Consider a multivariate spatio-
temporal nonstationary random field Z(s, t) =

{
Z1(s, t), . . . , Zp(s, t)

}⊤ such that Z(s, η̃; t, ξ̃) ={
Z1(s, η1; t, ξ1), . . . , Zp(s, ηp; t, ξp)

}⊤, where s ∈ Rd, η̃ =
{
η⊤

1 , . . . , η⊤
p

}⊤
∈ Rpd′

, ηi ∈ Rd′

,
ξ̃ =

{
ξ⊤

1 , . . . , ξ⊤

p

}⊤
∈ Rpd′′

, and ξi ∈ Rd′′

, d′
+ d′′ > 0, is a multivariate spatio-temporal stationary

random field, for i = 1, . . . , p. The components i, j of Z(s, η̃; t, ξ̃), taken at spatio-temporal locations
(s1, η1i; t1, ξ1i) and (s2, η2j; t2, ξ2j), after accounting for the extra spatial and temporal dimensions,
have a spatio-temporal stationary cross-covariance Cij

{
(s1, η1i) − (s2, η2j); (t1, ξ1i) − (t2, ξ2j)

}
.

4. Physically-motivated space–time models

A recurring theme in the elaborate discussions in Christakos (2017) is the need for physically-
motivated models. This is especially true for environmental datasets for which variables should not
be analyzed in a vacuum. Certain physical features that are inherent to the physical nature of these
variables are appropriately required to be incorporated in the cross-covariance function. Otherwise,
modeling efforts are deemed useless. Multivariate spatio-temporal geostatistics offers alternatives
to computationally expensive physics models by developing complex covariance function models
that can satisfactorily represent complicated physical phenomena. Waymire et al. (1984) advocated
the use of statistical models to describe ground-level observations and derived a physically realistic
stochastic behavior based on empirical observations. Examples of physically realistic statistical
models are the spatio-temporal covariance models satisfying the Taylor’s hypothesis (Taylor, 1938).
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A univariate spatio-temporal stationary covariance function C(h, u) on Rd
× R satisfies Taylor’s

hypothesis if there exists v ∈ Rd such that C(0, u) = C(vu, 0), u ∈ R. The Taylor’s hypothesis tells us
that the marginal spatial and temporal covariances can proxy each other and this is good because
one form might be more accessible than the other. Statistical theories of turbulence have sprung
from this simple relationship and several laboratory experiments have confirmed this equivalence,
at least at certain scales; see, e.g., Li et al. (2009) and references therein.

Bras and Rodríguez-Iturbe (1976) and Lovejoy and Mandelbrot (1985) studied the modeling
implications of the Taylor’s hypothesis by first modeling rainfall as a purely spatial phenomenon
and then considering it as a spatio-temporal phenomenon using Taylor’s hypothesis. Gupta and
Waymire (1987) were one of the first to rigorously develop the implications of Taylor’s hypothesis
in spatio-temporal statistics. They defined a process

Z(s, t) = Z̃(s − vt) (1)

with spatio-temporal stationary covariance function C(h, u) = CS(h − vu) and called it the frozen
field. Here, Z̃ is a purely spatial stationary random field and CS is its purely spatial stationary
covariance function. Cox and Isham (1988) offered more flexibility to the frozen field model by
replacing the constant velocity with a random velocity, V ∈ Rd, resulting in a spatio-temporal
covariance function model of the form C(h, u) = EV

{
CS(h − Vu)

}
. We call this model the non-

frozen random field model. The constant v in the frozen field model is usually treated as the
mean of the random variable V. The vectors V and v are commonly referred to as the random
and constant transport or advection velocity vectors, respectively. A random field simulated from
the frozen field model can exhibit a dimple effect. A dimple effect points to a phenomenon where
the covariance between Z(s1, t1) and Z(s2, t2) is stronger than that of Z(s1, t1) and Z(s2, t1), where
t2 = t1 + 1; see Kent et al. (2011). The frozen and non-frozen models, as well as the dimple
effect, are physically justifiable by observations influenced by transport phenomena that are usually
caused by predominant winds, waves, and flows, to name but a few. The stochastic representation
(1) makes physical sense in modeling observations influenced by transport phenomena under the
Lagrangian reference frame. This reference frame has its roots in physics and is a way of describing
the development of a phenomenon in space and in time while moving or traveling with it.

Covariance functions centered around modeling a process (1) are collectively termed ‘‘spatio-
temporal covariance functions under the Lagrangian framework’’ (Gneiting, 2002; Gneiting et al.,
2007). These covariance functions use the Lagrangian reference frame to build spatio-temporal
covariance functions from purely spatial covariance functions. A survey of existing literature
suggests that there is no detailed Lagrangian formulation in the multivariate nonstationary arena.
Hence, we took significant strides towards developing and unifying the modeling of multivariate
spatio-temporal transport datasets using specialized covariance functions under the Lagrangian
framework.

5. The Lagrangian framework

The Lagrangian framework transforms what had been primarily a purely spatial covariance
function into a spatio-temporal covariance function. Under this framework, the transport property
is exploited, and one readily obtains substantial performance benefits of a spatio-temporal model
using a primarily purely spatial one. The working premise is that the purely spatial random field
retains its spatial properties while being transported and the models depend for effectiveness on
the advection velocity vector. It effectively establishes that the derived spatio-temporal covariance
function inherits all the properties of the underlying purely spatial covariance function.

This technique seems to be most widely used in engineering, and only few developments
in theory and applications in geostatistics have been proposed. In this section, we review the
recent works done on this special construction approach and examine how more sophisticated
spatio-temporal models may be conceived.
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5.1. Stationary Lagrangian covariance functions

A brief review of the genesis of spatio-temporal covariance functions under the Lagrangian
framework has already been presented in Section 4. Ma (2003) established an umbrella theorem
that formalizes the validity of purely spatial covariance functions turning into spatio-temporal
covariance functions. The frozen and non-frozen field models are stationary in their inception. From
time to time, the frozen field model is used to model waves (Ailliot et al., 2011), wind (Gneiting
et al., 2007; Ezzat et al., 2018), solar irradiance (Lonij et al., 2013; Inoue et al., 2012), and cloud cover
data (Shinozaki et al., 2016). Gneiting et al. (2007) proposed to model an Irish wind dataset using a
convex combination of a classical and a Lagrangian spatio-temporal covariance function. Because of
prior knowledge of a prevailing westerly wind pattern, the Lagrangian spatio-temporal covariance
function assumed the form C(h, u) = (1 −

1
2v1

|h1 − uv1|)+, where h = (h1, h2)⊤, v = (v1, 0)⊤, and
(·)+ = max(·, 0). Christakos et al. (2017) used a different term for this random field and called it a
traveling random field that was then used to model the spread of diseases. In his book, Christakos
(2017) provided a more in-depth discussion of the traveling random field.

One nice property of Lagrangian spatio-temporal covariance functions is that, in general, along
the main direction of transport, the spatio-temporal relationship is asymmetric. Consequently, other
observations exhibiting space–time asymmetry in their covariance structure, although not obviously
influenced by the transport effect, may utilize models under this framework.

Although the Lagrangian framework easily extends purely spatial covariance functions to space–
time, a model under this framework, the stationary frozen field model, has the disadvantage
that the spatio-temporal covariance functions it produces are not anisotropic, for any u ̸= 0.
One should not confuse anisotropy and asymmetry. Anisotropy is a property involving only the
spatial arguments of the covariance function, whereas asymmetry involves both the spatial and
temporal arguments. Porcu et al. (2006) proposed an anisotropic version of this model by par-
titioning the spatial lag and the advection velocity vector into smaller components: C(h, u) =

EV1,V2 [L {γ1 (h1 − V1u) , γ2 (h2 − V2u)}], h1,V1 ∈ Rd1 , h2,V2 ∈ Rd2 , where γ1, γ2 are purely spatial
stationary variograms with γ1(0) = γ2(0) = 0 and d1+d2 = d. This is a valid spatio-temporal asym-
metric component-wise anisotropic stationary covariance function in Rd1 ×Rd2 ×R. Here L denotes
a bivariate Laplace transform with representation L(θ1, θ2) =

∫
[0,∞)2 exp (−r1θ1 − r2θ2) dF (r1, r2),

where F is a bivariate probability measure and L(0, 0) = 1.
Another major drawback of the stationary frozen field model is that the model itself does not

permit the dampening of the spatio-temporal covariance, meaning that the maximum covariances
at different temporal lags are always equal. However, real data do not exhibit this property. Objects
that are transported can be subjected to diffusion, i.e., they get transported to different directions
at any time point (Hwang et al., 2018). This drawback was addressed by the stationary non-frozen
model of Cox and Isham (1988) that allowed a dampened maximum covariance at nonzero temporal
lags. The stationary non-frozen model does not have an explicit form except for some special
distributions of the random advection velocity vector V and purely spatial covariance CS . Schlather
(2010) derived the explicit form when V ∼ Nd(µV,ΣV) and CS is the stationary squared exponential
covariance function:

C(h, u) =
1√

|Id + ΣVu2|
exp

{
− (h − µVu)

⊤
(
Id + ΣVu2)−1

(h − µVu)
}

.

It is apparent from the model above that the maximum possible covariance decreases as u increases.
Furthermore, this model can introduce anisotropy via ΣV at nonzero u; see Salvaña et al. (2020)
for illustrations of the stationary non-frozen field models. Fitting a stationary frozen model to data
generated from a stationary non-frozen Lagrangian covariance function can lead to poor parameter
estimates and kriging errors, as shown by Salvaña et al. (2020).

5.2. Nonstationary Lagrangian covariance functions

Nonstationarity can also be incorporated into any Lagrangian covariance function. Following Ma
(2003), Salvaña and Genton (2020) proposed the inception of new spatio-temporal covariance
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functions from purely spatial nonstationary ones. Indeed, if CS(s1, s2) is a valid purely spatial
nonstationary covariance function on Rd, then, C(s1, s2; t1, t2) = EV

{
CS(s1 − Vt1, s2 − Vt2)

}
for

s1, s2 ∈ Rd and t1, t2 ∈ R, is a valid spatio-temporal nonstationary covariance function on Rd
× R

provided that the expectation exists. This model leads to spatio-temporal covariance functions that
are nonstationary in both space and time.

The model above implies that the second-order nonstationary spatial profile of the random field
is constant at any time point, as the underlying purely spatial nonstationary covariance function,
CS , is independent of any temporal arguments. Notwithstanding, this model can be made more
general for some classes of purely spatial nonstationary covariance functions, e.g., deformation
models (Sampson and Guttorp, 1992), normal scale-mixture models (Paciorek and Schervish, 2006),
and basis function models, such that the second-order nonstationary spatial profile of the random
field may be time varying and that one can have second-order nonstationarity in space and/or time.

5.3. Stationary Lagrangian cross-covariance functions

The Lagrangian paradigm, originally formulated in the univariate setting, has been successfully
extended to the multivariate realm in a recent unpublished manuscript by Salvaña et al. (2020),
where the validity of the Theorem 1 in Ma (2003) was established in the multivariate setting.
Particularly, if CS(h) is a purely spatial matrix-valued stationary covariance function on Rd, then
C(h, u) = EV

{
CS(h − Vu)

}
, (h, u) ∈ Rd

× R, is a valid spatio-temporal matrix-valued stationary
covariance function on Rd

× R provided that the expectation exists.
For any u, C(h, u) inherits the isotropy of its univariate counterpart, in all its marginals and

cross-covariances. Furthermore, when V = v, C(h, u) becomes the multivariate stationary frozen
field and it carries the same drawbacks present in the univariate stationary frozen field model.
The multivariate stationary non-frozen field provides a natural alternative that is anisotropic for
u ̸= 0 and that allows for dampened maximum cross-covariance at u ̸= 0. Another option for
a Lagrangian stationary cross-covariance function that is anisotropic for u ̸= 0 is the Lagrangian
latent dimension model of Apanasovich and Genton (2010). The fundamental difference between
the model of Apanasovich and Genton (2010) and the formulation of Salvaña et al. (2020) is that the
former requires a spatio-temporal stationary covariance function and then uses latent dimensions
to transform the spatio-temporal stationary covariance function into a spatio-temporal stationary
cross-covariance function. In the latter model, one starts with a purely spatial stationary cross-
covariance function and turns it into a spatio-temporal stationary cross-covariance function by
virtue of the advection velocity vector.

The multivariate setup also opens the question of whether it is permissible that each variable can
have a different V that affects them. One approach to directly solve this problem is to construct a
spatio-temporal random field Z(s, t) =

{
Z̃1 (s − V1t) , . . . , Z̃p

(
s − Vpt

)}⊤, where Z̃ is a multivariate
purely spatial stationary random field and V1, . . . ,Vp are random vectors in Rp, which may or may
not be correlated. However, in this construction, one cannot keep the stationarity of the cross-
covariance function. Another option is to use the LMC with different uncorrelated random vectors
Vr , r = 1, . . . , R, 1 ≤ R ≤ p, for each of the R uncorrelated latent univariate random fields. With
this approach, the resulting spatio-temporal cross-covariance function remains stationary.

The last of this progression of models is the nonstationary version of the preceding model, which
again, has not yet been proposed in the literature. We develop this new class in Section 6 and we
show how we can model more interesting multivariate spatio-temporal random fields.

6. Nonstationary cross-covariance functions under the Lagrangian framework

The theorem below ensures the validity of the Lagrangian spatio-temporal nonstationary cross-
covariance functions.

Theorem 1. Let V be a random vector on Rd. If CS(s1, s2) is a valid purely spatial matrix-valued
nonstationary covariance function on Rd, i.e., CS(s1, s2) =

{
CS
ij (s1, s2)

}p
i,j=1

, then C(s1, s2; t1, t2) =
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EV
[
CS(s1 − Vt1, s2 − Vt2)

]
, for s1, s2 ∈ Rd, and t1, t2 ∈ R, is a valid spatio-temporal matrix-valued

nonstationary covariance function on Rd
× R provided that the expectation exists.

The proof and all subsequent proofs are relegated to the Appendix. Theorem 1 suggests that one
way to build spatio-temporal nonstationary cross-covariance functions is to take any purely spatial
nonstationary cross-covariance function and apply a Lagrangian transformation to the coordinates.
The resulting covariance function is multivariate, spatio-temporal, nonstationary, and Lagrangian.
Further scrutiny is necessary for the models arising from the construction approach in Theorem 1
and is given in Sections 6.1–6.3. A list of stylized examples applying Theorem 1 is also included.
Section 6.4 discusses the estimation procedure for Lagrangian models. Section 6.5 illustrates the
new cross-covariance function models and their corresponding simulated realizations.

6.1. Lagrangian nonstationary linear model of coregionalization

There are several nonstationary versions of the classical LMC but we select the nonstationary
LMC proposed by Fouedjio (2018), as an example, and extend it to space–time using Theorem 1.
Let Vr , r = 1, . . . , R, 1 ≤ R ≤ p, be random vectors on Rd that characterize the different
uncorrelated random advection velocities. If CS(s1, s2) is a valid purely spatial nonstationary LMC
on Rd, i.e., CS(s1, s2) =

∑R
r=1 ρr

[{
(s1 − s2)⊤Dr (s1, s2)−1(s1 − s2)

}1/2
]
Ar (s1)Ar (s2)⊤, then

C(s1, s2; t1, t2) =

R∑
r=1

EVr

{
ρr

([
{s1 − s2 − V(t1 − t2)}⊤Dr (s1 − Vr t1, s2 − Vr t2)−1

×{s1 − s2 − V(t1 − t2)}
]1/2 )

Ar (s1 − Vr t1)Ar (s2 − Vr t2)⊤
}

,

where ρr (·) is a valid univariate stationary correlation function of a normal scale-mixture type on Rd

and Ar is a p×R matrix, is a valid spatio-temporal matrix-valued nonstationary covariance function
on Rd

×R, for any 1 ≤ R ≤ p. The condition that Vr , r = 1, . . . , R, are uncorrelated random vectors
is set because the underlying univariate random fields are assumed to be uncorrelated. The case in
which they may be dependent is on the works.

6.2. Lagrangian spatially varying parameters cross-covariance functions

Introducing spatially varying parameters in a cross-covariance function is a common approach
of converting a stationary cross-covariance function to a nonstationary one. The purely spatial
nonstationary LMC in Section 6.1 is in fact an example of the spatially varying parameters approach
of Paciorek and Schervish (2006) for the normal scale-mixture type of covariance functions. Based on
the univariate formulation of Paciorek and Schervish (2006), Kleiber and Nychka (2012) introduced
the purely spatial Matérn nonstationary cross-covariance function. By applying Theorem 1, we
obtain the Lagrangian spatio-temporal Matérn nonstationary cross-covariance function:

Cij(s1, s2; t1, t2)
= ρijEV

{
σij(s1 − Vt1, s2 − Vt2) (2)

×
[
{s1 − s2 − V(t1 − t2)}⊤Dij(s1 − Vt1, s2 − Vt2)−1

{s1 − s2 − V(t1 − t2)}
]νij

×Kνij

[
{s1 − s2 − V(t1 − t2)}⊤Dij(s1 − Vt1, s2 − Vt2)−1

{s1 − s2 − V(t1 − t2)}
]}

,

for s1, s2 ∈ Rd, t1, t2 ∈ R, and i, j = 1, . . . , p. The purely spatial parameters are as follows: νij > 0
is the smoothness parameter, ρij ∈ [−1, 1] is the colocated correlation parameter, and σij(·) is the
spatially varying variance parameter, for i, j = 1, . . . , p. Note that ρij may also be allowed to vary
as a function of its spatial location; see Kleiber and Nychka (2012). Here, Kν is the modified Bessel
function of the second kind of order ν, V is a random vector on Rd, σij(s1 − Vt1, s2 − Vt2) =

|Di(s1 − Vt1)|1/4|Dj(s2 − Vt2)|1/4|Dij(s1 − Vt1, s2 − Vt2)|−1/2, Dij(s1, s2) =
1
2

{
Di(s1) + Dj(s2)

}
, and

Di(s) is a d × d positive definite kernel matrix for variable i, i = 1, . . . , p, at s that controls the
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spatially varying local anisotropy and which can be defined via its spectral decomposition, i.e., for
d = 2:

Di(s) =

[
cos {φi(s)} − sin {φi(s)}
sin {φi(s)} cos {φi(s)}

][
λ1i (s) 0
0 λ2i (s)

][
cos {φi(s)} sin {φi(s)}

− sin {φi(s)} cos {φi(s)}

]
,

where λ1i (s), λ2i (s) > 0 are the eigenvalues representing the spatial ranges and φi(s) ∈ (0, π/2)
represents the angle of rotation.

The model in (2) can be generalized to accommodate a time varying Di using the following
proposition.

Proposition 1. Let V be a random vector on Rd and let Dt
i (s) be a time varying d× d positive definite

kernel matrix at spatial location s and temporal location t, i = 1, . . . , p. If CS
ij is a valid purely spatial

nonstationary cross-covariance function of a normal scale-mixture type on Rd, then

Cij(s1, s2; t1, t2) = EV
{

σ
t1,t2
ij (s1 − Vt1, s2 − Vt2)

×CS
ij

([
{s1 − s2 − V(t1 − t2)}⊤ Dt1,t2

ij (s1 − Vt1, s2 − Vt2)−1
{s1 − s2 − V(t1 − t2)}

]1/2) }
, (3)

is a valid spatio-temporal nonstationary cross-covariance function on Rd
× R provided that the

expectation exists. Here σ
t1,t2
ij (s1−Vt1, s2−Vt2) =

⏐⏐Dt1
i (s1−Vt1)

⏐⏐1/4⏐⏐Dt2
j (s2−Vt2)

⏐⏐1/4⏐⏐Dt1,t2
ij (s1−Vt1, s2−

Vt2)
⏐⏐−1/2, Dt1,t2

ij (s1, s2) =
1
2

{
Dt1

i (s1) + Dt2
j (s2)

}
, and Dt

i can be defined via its spectral decomposition,
i.e., for d = 2 and i = 1, . . . , p:

Dt
i (s) =

[
cos {φi(s, t)} − sin {φi(s, t)}
sin {φi(s, t)} cos {φi(s, t)}

][
λ1i (s, t) 0

0 λ2i (s, t)

][
cos {φi(s, t)} sin {φi(s, t)}

− sin {φi(s, t)} cos {φi(s, t)}

]
,

where λ1i (s, t), λ2i (s, t) > 0 are the eigenvalues representing the spatial ranges at spatio-temporal
location (s, t) and φi(s, t) ∈ (0, π/2) represents the angle of rotation at location (s, t).

6.3. Lagrangian multivariate deformation model

The univariate deformation model was first proposed by Sampson and Guttorp (1992). No
multivariate extensions were proposed since. Here, we present a multivariate extension.

Theorem 2. If C̃S
ij (s1 − s2) is a valid purely spatial stationary cross-covariance function on Rd, then

CS
ij (s1, s2) = C̃S

ij

{
∥fi(s1) − fj(s2)∥

}
, s1, s2 ∈ Rd,

where fi, i = 1, . . . , p, represent deterministic non-linear smooth bijective functions of the geographical
space onto the deformed space, is a valid purely spatial nonstationary cross-covariance function on Rd.

The nonstationary cross-covariance functions derived using Theorem 2 naturally yield models
with variable asymmetry features. The simplest case is when fi = f , for all i = 1, . . . , p. When
applying Theorem 1 to the cross-covariance functions in Theorem 2, we obtain the multivariate
Lagrangian spatio-temporal deformation models as follows. Let V be a random vector on Rd. If
C̃S
ij (s1 − s2) is a valid purely spatial stationary cross-covariance function on Rd, then

Cij(s1, s2; t1, t2) = EV

[
C̃S
ij

{
∥fi(s1 − Vt1) − fj(s2 − Vt2)∥

}]
, s1, s2 ∈ Rd, (4)

where fi, i = 1, . . . , p, represent deterministic non-linear smooth bijective functions of the geo-
graphical space onto the deformed space, is a valid spatio-temporal nonstationary cross-covariance
function on Rd

× R provided that the expectation exists.
The deformation function can also vary in time, i.e., f can also depend on the temporal location,

f t . As such, the model in (4) can be generalized in the following proposition.
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Fig. 1. Heatmaps of the spatio-temporal marginals and cross-covariance functions for the proposed models: (a) frozen
Lagrangian nonstationary LMC, (b) frozen Lagrangian spatially varying parameters model, and (c) frozen Lagrangian
deformation model. Reference locations 1 and 2 are marked in Fig. 2.

Proposition 2. Let V be a random vector on Rd and let f ti be a time-varying deformation function,
i = 1, . . . , p. If C̃S

ij (s1 − s2) is a valid purely spatial stationary cross-covariance function on Rd, then

Cij(s1, s2; t1, t2) = EV
[
C̃S
ij

{
∥f t1i (s1 − t1V) − f t2j (s2 − t2V)∥

}]
, s1, s2 ∈ Rd, t1, t2 ∈ R, (5)

is a valid spatio-temporal nonstationary cross-covariance function on Rd
× R provided that the

expectation exists.

6.4. Estimation

For stationary Lagrangian models, estimation can be done via least squares or maximum
likelihood and was suggested by Salvaña et al. (2020) to proceed in a multi-step fashion in both
approaches, starting with retrieving the purely spatial parameters (marginals and crosses), followed
by the advection vector parameters and other temporal parameters. The fact that, for stationary
Lagrangian models, we can write out the spatial margins, free of any temporal parameters, is espe-
cially convenient for estimation. However, for nonstationary Lagrangian models, a joint estimation
of purely spatial and advection vector parameter is necessary, as the spatial and temporal margins
can no longer be split up; see Salvaña et al. (2020) and Salvaña and Genton (2020) for a more
in-depth discussion of the estimation of Lagrangian spatio-temporal stationary and nonstationary
models.

6.5. Illustrations

In Fig. 1, for p = 2, we illustrate the different proposed models, and their corresponding bivariate
realizations are shown in Fig. 2. In the Lagrangian nonstationary LMC example in Fig. 1(a), we set
V1 = v1 = (0.1, 0.1)⊤ and V2 = v2 = (−0.1, −0.1)⊤. The advection velocities in the frozen models
in Fig. 1(b) and Fig. 1(c) are set to V = v = (0.1, 0.1)⊤. In Fig. 1(c), the first deformation is a
point-source f1(s) = b+ (s− b)∥s− b∥, b = (0.5, 0.5)⊤, and the second deformation is of the form
f2(s) = b + (s − b)

{
1 + c1 exp(−c2∥s − b∥

2)
}
, b = (0.15, 0.15)⊤, c1 = 6, and c2 = 5. Here f2 is the

same model used by Iovleff and Perrin (2004) in their simulation study.
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Fig. 2. Simulated realizations for the proposed models: (a) frozen Lagrangian nonstationary LMC, (b) frozen Lagrangian
spatially varying parameters model, and (c) frozen Lagrangian deformation model. Two reference locations are represented
by crosses, and are used in Fig. 1.

7. Application to regional climate model output

The aforementioned multivariate purely spatial and spatio-temporal stationary and nonstation-
ary models are tested on a bivariate regional climate model output that includes both temperature
and precipitation, the two being possibly influenced by transport, on a portion of the Midwest of
the United States. The dataset is gridded and covers an area of approximately 1000 km × 1600
km. The dataset is exactly the same as the one analyzed in Genton and Kleiber (2015). Contrary to
the spatio-temporal vantage point we are proposing, after annual trend removal, they treated the
yearly temporal replicates of temperature and log precipitation measurements over the summer
months (June, July, and August) for the years 1981–2004 as temporally independent and fitted eight
bivariate purely spatial stationary and nonstationary covariance function models to the dataset. This
approach is limited because it misses the temporal structure due to the fact that the analysis is
constrained to be purely spatial. In this work, using the same dataset used by Genton and Kleiber
(2015), we view the repeated measurements in time as spatio-temporally dependent.

7.1. Spatio-temporal data analysis

Fig. 3 shows eight consecutive snapshots of the temperature and log precipitation residual fields.
From the figure, one can see that the year-on-year spatial profile of the average temperature and log
precipitation changes. Specifically, the lowest temperature occurs in different regions every year.
Similarly, the region with the highest mean log precipitation varies. Presence of atmospheric flows
can cause this phenomenon. The prevailing advection direction can be detected visually by following
the blue and red blobs for the temperature and log precipitation residual fields, respectively.
Furthermore, the frozen field assumption can be outright dismissed as the transport direction and
magnitude seem different for every two consecutive frames.

Fig. 3 also shows that indeed, at any time point, temperature and log precipitation may have
equal correlation scales and that the two are negatively correlated. Moreover, the temperature
residual field is smoother than the log precipitation residual field and that their smoothness are
consistent all throughout the temporal domain under study. Following Genton and Kleiber (2015),
let T (s, t) and P(s, t) be the temperature and log precipitation residual measurements at spatial
location s and temporal location t . Augmenting their purely spatial bivariate analysis, we seek to
find the best bivariate spatio-temporal model for the phenomenon at hand. We fit one bivariate
purely spatial and eight bivariate spatio-temporal models as follows:

• M1: Parsimonious bivariate purely spatial Matérn with spatially varying variances and colo-
cated correlation coefficients modeled using thin plate splines.
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Fig. 3. Bivariate dataset of Genton and Kleiber (2015) with temporal resolution of 92 days (June to August), for the
years 1982–1989. The plots in the last column are exactly the plots found in Fig. 1 of Genton and Kleiber (2015). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

• M2: Non-frozen Lagrangian stationary LMC with single advection velocity vector, i.e., T (s, t) =

A11Z1(s−V1t) and P(s, t) = A21Z1(s−V1t)+A22Z2(s−V1t), where Z1 and Z2 are independent
mean zero purely spatial processes generated from Matérn correlations, M(h; ar , νr ), and
Vr ∼ N2(µVr ,ΣVr ), r = 1, 2, are random advection velocity vectors. Here M(h; a, ν) is the
univariate Matérn correlation with scale and smoothness parameters a and ν, respectively.

• M3: Non-frozen Lagrangian nonstationary LMC with single advection velocity vector and
spatially varying coefficients modeled using thin plate splines, i.e., T (s, t) = A11(s−V1t)Z1(s−
V1t) and P(s, t) = A21(s − V1t)Z1(s − V1t) + A22(s − V1t)Z2(s − V1t). Z1 and Z2 are the same
as those in M2.

• M4: Non-frozen Lagrangian stationary LMC with multiple advection velocity vectors, i.e.,
T (s, t) = A11Z1(s − V1t) and P(s, t) = A21Z1(s − V1t) + A22Z2(s − V2t). Z1 and Z2 are the
same as those in M2.

• M5: Non-frozen Lagrangian nonstationary LMC with multiple advection velocity vectors and
spatially varying coefficients modeled using thin plate splines, i.e., T (s, t) = A11(s−V1t)Z1(s−
V1t) and P(s, t) = A21(s − V1t)Z1(s − V1t) + A22(s − V2t)Z2(s − V2t). Z1 and Z2 are the same
as those in M2.

• M6: Non-frozen Lagrangian parsimonious bivariate stationary Matérn: for i, j = 1, 2,

Cij(h, u) = ρijσiσjEV
{
M

(
h − Vu; a, νij

)}
.

• M7: Non-frozen Lagrangian parsimonious bivariate Matérn with spatially varying variances
and colocated correlation coefficients modeled using thin plate splines: for i, j = 1, 2,

Cij(s1, s2; t1, t2) = EV
{
ρij(s1 − Vt1, s2 − Vt2)σij(s1 − Vt1, s2 − Vt2)M

(
h − Vu; a, νij

)}
.

• M8: Bivariate spatio-temporal Gneiting–Matérn of Bourotte et al. (2016) with a frozen
Lagrangian parsimonious bivariate stationary Matérn. This model is a linear combination of
a bivariate spatio-temporal fully symmetric stationary covariance function and a bivariate
spatio-temporal asymmetric stationary covariance function of the form: for i, j = 1, 2,

Cij(h, u) = ρijσiσj

{
(1 − Λ)

1
α|u|2ξ + 1

M(h; a, νij) + ΛM
(
h − vu; a, νij

)}
,

where α > 0 and ξ ∈ (0, 1] describe the temporal range and smoothness, respectively. Here
Λ ∈ [0, 1] is the temporal asymmetry parameter which represents the degree of lack of
symmetry in time. This temporal asymmetry parameter is key to detect possible transport
effect. When Λ ̸= 0 and v ̸= 0, the variables are most likely influenced by an advection
velocity and are being transported. The model above is very flexible since a wide range of
multivariate spatio-temporal random fields can be modeled, from static to moving.
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Table 1
Maximum likelihood parameters estimates of the best performing frozen and non-frozen models in terms of the BIC. The
advection velocity parameters are in degrees while the scale parameters a and ai, i = 1, 2, are in kilometers. The spatially
varying variance and colocated correlation coefficients are no longer shown.
Model ν̂1 ν̂2 a a1 a2 ξ α ∆ v µV1 ΣV1 µV2 ΣV2

M5 0.261 0.307 – 355 1026 – – – – (−1.096, 1.441)⊤
(
0.011 0

0 0.037

)
(−1.139, 2.643)⊤

(
0.001 0

0 0.002

)
M9 1.275 0.602 323 – – 0.91 360 0.442 (−0.313, 0.205)⊤ – – – –

• M9: Bivariate spatio-temporal Gneiting–Matérn of Bourotte et al. (2016) with a frozen
Lagrangian parsimonious bivariate Matérn (similar to M8) with spatially varying variances
and colocated correlation coefficients modeled using thin plate splines: for i, j = 1, 2,

Cij(s1, s2; t1, t2) = ρij(s1 − vt1, s2 − vt2)σij(s1 − vt1, s2 − vt2)

×

{
(1 − Λ)

1
α|u|2ξ + 1

M(h; a, νij) + ΛM
(
h − vu; a, νij

)}
.

A few remarks regarding the chosen models above are in order. Because frozen models generally
do not perform well when fitted to random fields that are not frozen, as they do not allow diffusion
or dissipation of covariances and cross-covariances at nonzero temporal lags, we do not fit frozen
versions of models M2 to M7. We still included, however, a variant of the frozen field models such as
models M8 and M9 since the non-Lagrangian portion of the models takes care of the dissipation of
covariances and cross-covariances at nonzero temporal lags. For brevity, we limit the nonstationary
models to only capture spatially varying variances and cross-correlation coefficients since that was
the approach undertaken by Genton and Kleiber (2015), to which we aim to make a comparison
regarding purely spatial vs. spatio-temporal fits. Moreover, prior knowledge of the topography of the
region under study signifies that a spatially varying variance and colocated correlation coefficients
model is sufficient as every site in the region is subjected to almost similar, mainly agricultural,
topographical features. The formulation of the LMC models is tailored after the technique of Genton
and Kleiber (2015) to bestow on the temperature variable a smoother spatial random field. Finally,
unlike Genton and Kleiber (2015), we do not have the luxury of independent spatio-temporal
replicates to produce empirical estimates of the spatially varying variance and colocated correlation
coefficients. Hence, the spatially varying parameters are assumed to vary smoothly over space and
are modeled via thin plate splines; refer to Salvaña and Genton (2020) for a justification of this
estimation approach.

7.2. Model performance

The model parameters are estimated via maximum likelihood. The negative log-likelihoods are
minimized using the optim function with quasi-Newton method ‘‘BFGS’’ in R (R Core Team, 2019).
It took approximately 3 h to fit the purely spatial models while fitting spatio-temporal models took
20 h using a 32-core Intel Xeon Gold 6148 with 2.6 GHz clock speed. The interpolation performances
of the models are evaluated by the Akaike and Bayesian information criteria. Table 1 collects the
maximum likelihood parameter estimates of the best performing frozen and non-frozen models
in terms of the BIC (see Table 2). Indeed, the two fields are negatively correlated with an average
correlation coefficient of −0.573 under stationary models M6 and M8. The estimated value for the
spatio-temporal asymmetry parameter ∆ is nonzero, i.e., ∆̂ = 0.442. This means that there is a
transport behavior that will ultimately be missed if one results to using only spatio-temporal non-
Lagrangian models. The advection velocity vector estimates from all the Lagrangian models imply
approximately the same Northwest mean direction of transport.

We want to find out if spatio-temporal models have additional benefits over purely spatial
models in interpolation and prediction. Comparisons of their performance can be done directly
simply by using the likelihood. Also a viable approach in performance comparison between the two
modeling paradigms, purely spatial and spatio-temporal, is introducing a magnitude adjustment to
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Table 2
A summary of the models and their in-sample (log likelihood, AIC, and BIC) and out-of-sample prediction scores (average
RMSE). The in-sample scores were computed using the full data. The lower the AIC, BIC, and RMSE values, the better.
The reverse is true for the log likelihood. The best scores are in bold. For concise comparison, we include the fit of three
models in Genton and Kleiber (2015) and their corresponding out-of-sample prediction scores.

Portion of data screened

Model Log likelihood AIC BIC 5% 10% 15% 20%

Spatial

M1 (Nonstationary) 67,173 −134, 218 −133, 935 0.079 0.070 0.083 0.080
Nonstationary Parsimonious
Matérn in Genton and Kleiber
(2015)

67,242 −134, 476 −134, 446 0.077 0.073 0.078 0.072

Stationary Parsimonious
Matérn in Genton and Kleiber
(2015)

66,234 −132, 456 −132, 410 0.078 0.077 0.077 0.080

Stationary LMC in Genton and
Kleiber (2015)

65,611 −131, 208 −131, 155 0.074 0.078 0.079 0.078

Spatio-
Temporal

M2 (Stationary) 67,564 −135, 110 −135, 042 0.034 0.047 0.048 0.059
M3 (Nonstationary) 67,722 −135, 508 −135, 371 0.032 0.047 0.048 0.060
M4 (Stationary) 68,771 −137, 520 −137, 436 0.028 0.032 0.042 0.049
M5 (Nonstationary) 68, 952 −137, 864 −137, 712 0.027 0.032 0.041 0.049
M6 (Stationary) 67,435 −134, 854 −134, 793 0.034 0.047 0.048 0.059
M7 (Nonstationary) 67,499 −134, 674 −133, 928 0.029 0.039 0.043 0.052
M8 (Stationary) 67,563 −135, 098 −134, 992 0.030 0.042 0.055 0.068
M9 (Nonstationary) 68,514 −136, 826 −136, 057 0.029 0.036 0.046 0.051

the likelihood function; see Ribatet et al. (2012). This was the approach taken by Sharkey andWinter
(2019) to quantify loss of information when fitting purely spatial models given spatio-temporally
dependent data. Another approach, which we follow in this paper, is to conduct a pseudo cross-
validation study and measure co-kriging performance. In particular, we introduce different degrees
of data screening. In the first round, we screen 5% of the 620 available spatial locations, at each t ,
t = 1, . . . , 24. Then, we increase the number of values screened at an increment of 5%. When a
spatial location is chosen to be screened, all the variables observed on that location are screened.
At each round, we compute the root mean square error (RMSE). The RMSE is defined as:

RMSE =

√ 1
|S|T

T∑
t=1

∑
r∈S

∥Z(sr , t) − Ẑ(sr , t)∥2, (6)

where T = 24 and S , with cardinality |S|, is the set of screened spatial locations indices and S does
not change across t . Here Ẑ(sr , t) is the vector of predicted values for the two variables at time t at
the unobserved location sr , r ∈ S , and Ẑ(sr , t) is computed using the co-kriging formula in Section 1.
Each round is repeated 1000 times with different sets of randomly chosen screened spatial locations.
We expect that spatio-temporal models will have lower average RMSE than the purely spatial
ones since they can borrow more information from neighboring temporal sites to more accurately
predict screened data. Table 2 summarizes the spatio-temporal co-kriging performances of the
different models. The log likelihood values of all spatial and spatio-temporal models are at par with
each other. The nonstationary models generally perform better than their stationary counterparts.
Furthermore, the spatio-temporal non-frozen Lagrangian models and the frozen Lagrangian model
M9 have some of the best interpolation performance, with the non-frozen Lagrangian nonstationary
LMC with multiple advection velocities as the preferred model in all metrics. This was expected
since the model offers more flexibility by allowing different magnitudes and directions of advection.
While the in-sample metrics (log likelihood, AIC, and BIC) provide limited evidence that spatio-
temporal modeling should be pursued on this dataset, the out-of-sample metrics in Table 2 say
otherwise. The average co-kriging RMSE is less when using spatio-temporal models on this bivariate
dataset. Moreover, the discrepancies between the prediction performance of purely spatial and
spatio-temporal models are more pronounced as more spatial locations are screened. Hence, we
conclude that spatio-temporal models provide a large improvement over the purely spatial models.
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8. Purely spatial and spatio-temporal nonstationary cross-covariance functions on the sphere

All the methods previously mentioned in this paper produce valid cross-covariance functions on
the sphere when evaluated using the chordal distance. The chordal distance is the length of the
shortest straight line between two locations on the sphere. However, the concept of a straight line
does not make sense on a sphere. On curved surfaces such as the sphere, the amount of departure
that the surfaces make from being a plane should be accounted for (Jacobson and Jacobson, 2005).
As a consequence, the shortest path between two locations on the sphere is rightfully represented
by a curve or a geodesic. The length of the curve separating two locations on the sphere is
called the great circle distance. The great circle distance, however, renders positive definiteness
of a covariance function model a serious concern. Furthermore, replacing the great circle distance
with chordal distance, to which the latter has an extensive array of positive definite functions in
Euclidean space to choose from, may lead to certain problems in interpolation and prediction, as the
chordal distance underestimates the great circle distance (Porcu et al., 2016). These complications
provided the impetus for extending existing models on the Euclidean space to work with the
great circle distance and for developing new methods that work on data obtained on the sphere.
Much recent progress has been made including the results of Jeong and Jun (2015), Guinness and
Fuentes (2016), Jeong et al. (2017), Porcu et al. (2018), and White and Porcu (2019b). The papers
from Arafat Hassan Mohammed (2017) and Guella et al. (2018) provided rigorous characterization
of strictly positive definite covariance and cross-covariance functions on the sphere, respectively. An
analogue of the univariate purely spatial stationary Matérn that works on the sphere was introduced
by Alegría et al. (2018). Variable asymmetry on spherical processes was also studied in that paper.
Lastly, White and Porcu (2019a) modeled air pollution using valid models on the sphere.

Other studies detailing the construction and characterization of nonstationary covariance func-
tions on the sphere were published by Jun and Stein (2007, 2008), Hitczenko and Stein (2012),
and Jun (2014). A study by Jun (2011) involved deriving models from scalar potentials using
differential operators. A physically-motivated construction was used in the models of Fan et al.
(2018), specifically for divergence-free and curl-free random vector fields. A paper by Li and Zhu
(2016) extended the kernel convolution approach of Paciorek and Schervish (2006) to introduce
nonstationary models on the sphere.

Alegría and Porcu (2017) and Porcu et al. (2018) were the first to discuss the validity of the
covariance functions under the Lagrangian framework on the sphere, i.e., the covariance functions
were evaluated without the use of the Euclidean distance but the great circle distance instead. More
specifically, the transport was modeled through a random rotation matrix R ∈ R(d+1)×(d+1), and
not through the random advection velocity vector V ∈ Rd+1. Moreover, R was chosen such that
it is an orthogonal matrix with a determinant equal to 1. Consider the sphere S2 with unit radius,
i.e., S2

=
{
s ∈ R3, ∥s∥ = 1

}
, where ∥ · ∥ is the usual Euclidean distance, as our spatial domain. The

spatial location s ∈ R3 has a spherical coordinate representation s = (φ, θ )⊤, where φ = Lπ/180
and θ = lπ/180 are the polar and azimuthal angles, and (L, l) ∈ [−90◦, 90◦

] × [−180◦, 180◦
] is the

spatial location given in latitude, L, and longitude, l. The Lagrangian spatio-temporal covariance
function C(s1, s2; t1, t2) = ER

[
CS

{
dGC (Rt1s1,Rt2s2)

}]
, s1, s2 ∈ S2, R ∈ R3×3, where CS is a

purely spatial geodesically isotropic covariance function evaluating its arguments using the great
circle distance, dGC (s1, s2) = arccos(⟨s1, s2⟩) = arccos {sinφ1 sinφ2 + cosφ1 cosφ2 cos(θ1 − θ2)},
and Rt

= Q
[
diag {exp (iκkt)}3k=1

]
Q−1, such that the eigenvalues λk of R can be uniquely written

as λk = exp(iκk), for k = 1, 2, 3, is a valid spatio-temporal covariance function on the sphere
provided that the expectation exists. Extending this model to accommodate p > 1 variables is
straightforward. Let Ri be a random rotation matrix on R3×3, for i = 1, . . . , p. Suppose CS

ij is a
valid purely spatial geodesically isotropic cross-covariance function on S2, then Cij(s1, s2; t1, t2) =

ERi,Rj

[
CS
ij

{
dGC (R

t1
i s1,R

t2
j s2)

}]
, is a valid spatio-temporal cross-covariance function on S2

× R,
provided that the expectation exists. The proof can be found in the Appendix.

9. Discussion

Important research progress has been made since the review paper of Genton and Kleiber (2015).
Many modeling techniques and approaches were developed, and many research avenues were
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explored. In this paper, we have reviewed recent advances in the field of multivariate spatio-
temporal geostatistics, and presented a variety of models that can adequately describe different
behaviors of multivariate spatio-temporal datasets. We devoted a significant part of the paper to
introduce and formulate new spatio-temporal covariance models under the Lagrangian framework.
The Lagrangian framework provides a recipe for extending purely spatial models to space–time and
the models derived from this formulation are generally space–time asymmetric. Although here we
attribute the space–time asymmetry to transport caused by an advection velocity, the modeling
approach can still be used as long as the space–time asymmetry behavior is observed. The only
limitation of the models under the Lagrangian framework is that they are more appropriately
applied when the random field is transported.

Ongoing research that is being done in parallel to the writing of this review paper includes
the Lagrangian multivariate stationary and nonstationary models on the sphere and the Lagrangian
spatio-temporal dimension expansion. Extending the Lagrangian framework to modeling extreme
events and non-Gaussian random fields is also in the works. Lagrangian Markov random field
models for multivariate lattice data is also an interesting direction to explore.

The Lagrangian formulation of known spatial copula models is an interesting research prob-
lem. Significant work has been done in the copula space for multivariate nonstationary random
fields. Krupskii and Genton (2019) proposed a new copula model that can capture more complex
dependence behavior such as strong joint tail dependence and variable asymmetry. The concept of
spatial asymmetry is a feature that is also recently studied in the copula space. Bárdossy and Hörning
(2017) offered a procedure in detecting spatial asymmetry by using the concept of reversibility in
time series to purely spatial random fields. The novelty of their work lies in the ability to detect
directional dependence from a single purely spatial snapshot of a spatio-temporal random field.
These two papers may provide a key starting point for constructing methodologies to detect and
model space–time asymmetries from a purely spatial dataset.

An additional aim of research should be to identify distributions that lead to explicit forms
of the covariance function C(h, u) = EV

{
CS(h − Vu)

}
. A major challenge in this area is to

hasten the evaluation of the non-frozen Lagrangian covariance model. The usage of the non-frozen
model is inherently difficult because of the presence of the expectation. Since only a few known
specialized cases result in explicit forms, sophisticated models have to be evaluated numerically.
Development of techniques in performing this numerical evaluation rapidly is also an open problem.
Approximations to the non-frozen model may be attempted.

The Lagrangian framework can be used to extend multivariate purely spatial variograms to
space–time. Given the relationship between cross-covariance functions and cross-variograms under
joint second-order stationarity, i.e., γ(h) = C(0) −

1
2 {C(h) + C(−h)}, one obtains a spatio-temporal

cross-variogram: γ(h, u) = C(−vu)− 1
2 {C(h− vu)+ C(vu− h)}. Hence, multivariate models such as

those proposed in Chen and Genton (2019) can readily be extended to space–time.
For the sake of conciseness, we only provided sufficient discussions on concepts and models,

highlighted only their distinctive features, and restricted the discussions on models with clear av-
enues for future research. However, three essential topics that were omitted require mention. First,
computational issues when fitting massive multivariate spatial and spatio-temporal datasets are a
practical consideration that should be addressed. Furthermore, fitting complex models consumes
a lot of computing power. This is largely due to heavy parameterization of more complex models.
Parameter estimation and prediction become excruciatingly slow as n and p increase. Cost in com-
putation should not far exceed the gain in prediction. Otherwise, there is substantial disincentive in
fitting more advanced models. Nevertheless, this challenge presents an opportunity to support usage
of sophisticated models on large datasets. Ton et al. (2018) highlighted three viable strategies to
overcome scalability issues, including low rank approximations, sparse approximation methods, and
spectral methods. Low rank approximations involve approximating the full covariance matrix with
a matrix of smaller rank. Often, basis functions at pre-specified knots are utilized for this purpose. A
recent work of Kleiber et al. (2019) utilized basis function representations, with coefficients taken
from a multivariate lattice process, and gave alternatives to commonly used multivariate purely
spatial models. Dimension reduction may also be achieved by clustering via Dirichlet processes. A
complete treatment of this model is found in Shirota et al. (2019). Baugh and Stein (2018) proposed
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an approximation to the full likelihood for purely spatial nonstationary Gaussian processes using
recursive skeletonization factorizations. The full recursive skeletonization factorization procedure
is laid out in Minden et al. (2017). Litvinenko et al. (2019) introduced the hierarchical matrix
or H-matrix approximation of a dense log-likelihood. A known technique in linear algebra, the
H-matrix approximation involves partitioning the full covariance matrix into sub-blocks, followed
by low-rank approximation of the majority of the sub-blocks.

The second approach, the sparse approximation methods, introduces sparsity in the dense full
covariance matrix via compactly supported covariance functions. Hence, for this purpose, a great
deal of attention is being given to flexible compactly supported covariance function models and
covariance tapering; see Genton and Kleiber (2015) and references therein for a full discussion on
this second approach. Porcu et al. (2020) provided spatio-temporal compactly supported models.
The compact supports in their models are dynamical in the sense that the compact supports
depend on the spatial and temporal lags. Bevilacqua et al. (2016) studied the implications of fitting
multivariate covariance tapered models on two fronts: statistical efficiency and computational com-
plexity. They concluded that their proposed models lead to some loss in computational efficiency
but kept the estimation equations unbiased. Another alternative to compactly supported covariance
functions are the nearest neighbor Gaussian process (NNGP) models (Datta et al., 2016). These
models induce sparsity on the full precision matrix and they work under the graphical models
framework. Recently, Taylor-Rodriguez et al. (2019) combined this approach with spatial factor
models (SFM) to come up with the SF-NNGP model for LIDAR and ground measurements of forest
variables, with large p and large n. A specialized treatment is demanded for SFM with large p and
large n, but not all variables are observed on the spatial locations under study. This problem was
tackled by Ren and Banerjee (2013) using an adaptive Bayesian factor model. Hybrid approaches
involving low rank approximations and sparse approximation methods are also done in practice
and were thoroughly reviewed in Zhang et al. (2019).

Lastly, spectral approaches exploit the spectral representation of the full covariance matrix.
Mosammam (2016) proposed the half spectral composite likelihood targeted for large n problems.
His approach involves rewriting the full likelihood as a function of the periodogram and the spectral
density function evaluated at (h, τ ), where h is the spatial lag and τ is the temporal frequency. This
avoids the expensive inversion and determinant computation of the large full covariance matrix.
Other spectral approaches are listed in Ton et al. (2018).

When one includes spatial (and temporal) nonstationarity into the mix of complex features
present in the data, the models above cannot be appropriately applied as they are defined only in
the stationary case. New models addressing large scale multivariate spatio-temporal nonstationary
phenomena, similar to the work of Kleiber and Porcu (2015) in the purely spatial stationary case,
are demanded.

The scalability issues mentioned in the previous paragraphs may be overcome using high
performance computations such as the ExaGeoStat software developed mainly for large n problems
with dense full covariance matrices (Abdulah et al., 2018a). ExaGeoStat employs the most advanced
parallel architectures, combined with cutting edge dense linear algebra libraries. ExaGeoStat was
also fine-tuned to work on the Tile Low-Rank representation of the dense full covariance matrix
(Abdulah et al., 2018b).

The second important topic regarding multivariate spatio-temporal modeling which was not yet
mentioned in this work is the need for efficient estimation techniques for large n and p problems. A
good estimation technique is necessary to provide good prediction performance. Already numerous
estimation techniques have been developed: least squares, maximum likelihood, restricted maxi-
mum likelihood, composite likelihood, and other nonparametric approaches. However, theoretical
developments in estimation techniques in the multivariate nonstationary context lag behind and
should be attempted. Tajbakhsh et al. (2019) formulated the generalized sparse precision matrix
selection (GSPS) algorithm for fitting variable separable purely spatial cross-covariance models and
guaranteed theoretical convergence of the estimators. The GSPS method is predicated on a linear
algebra result which states that ‘‘if the elements of a matrix show a decay property, then the
elements of its inverse also show a similar behavior’’ (Jaffard, 1990; Benzi, 2016). The GSPS is a
two-stage approach. The first stage involves approximating the precision matrix of the full data by
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an unparameterized sparse matrix using Gaussian Markov random field (GMRF) approximation via
maximum likelihood. The second stage entails inversion of the fitted precision matrix and fitting
a parametrized cross-covariance matrix via least squares. The convexity of the precision matrix
in the first stage makes computation less demanding. Castrillon-Candás et al. (2016) formulated
a new set of contrasts for their proposed multi-level restricted maximum likelihood. Horrell and
Stein (2015) highlighted the complications brought by the composite likelihood to datasets with
enormous spatial and temporal separation lags. According to them, the composite likelihood has
no clear criteria in choosing the subsets of the data and their corresponding conditioning sets. In
practice, observations with small spatial and temporal lags are grouped together. However, this
is not the case with their polar-orbiting satellite dataset. Hence, they developed the Interpolation
likelihood or I-likelihood which eradicates all these issues.

Lastly, new constructing principles that are capable of modeling environmental phenomena more
realistically, without sacrificing critical features to much simpler assumptions, should be explored.
The pervasiveness of large spatio-temporal data has given us the ability to extract even the most
hidden features of a dataset. These features should be represented in the spatio-temporal cross-
covariance functions. Active areas of work such as Bayesian models and stochastic partial differential
equations (SPDE) were not discussed here explicitly, but these offer different perspectives and
strategies in modeling.

Appendix. Proofs

Proof of Theorem 1. Let λl ∈ Rp. Then,
n∑

l=1

n∑
r=1

λ⊤

l C(sl, sr ; tl, tr )λr =

n∑
l=1

n∑
r=1

λ⊤

l EV
{
CS (sl − Vtl, sr − Vtr)

}
λr

= EV

{
n∑

l=1

n∑
r=1

λ⊤

l C
S (

s̃l, s̃r
)
λr

}
≥ 0

for all n ∈ Z+ and {(s1, t1), . . . , (sn, tn)} ∈ Rd
× R, where the last inequality follows from

the assumption that CS is a valid purely spatial matrix-valued nonstationary covariance function
on Rd. □

Proof of Theorem 2. The validity is established by considering a purely spatial random field
Z(s) =

[
Z1 {f1(s)} , . . . , Zp

{
fp(s)

}]⊤. □

Proof of Proposition 1. Let Q tl,tr
sl,sr =

[
{sl − sr − V(tl − tr )}⊤ Dtl,tr

ij (sl − Vtl, sr − Vtr )−1 {sl − sr

−V(tl − tr )}
]1/2

and λl ∈ Rp. Then:

n∑
l=1

n∑
r=1

λ⊤

l C(sl, sr ; tl, tr )λr

=

n∑
l=1

n∑
r=1

λ⊤

l EV

[{
σ

tl,tr
ij (sl − Vtl, sr − Vtr )C̃S

ij

(
Q tl,tr
sl,sr

)}p

i,j=1

]
λr

= EV

[
n∑

l=1

n∑
r=1

λ⊤

l

{ ⏐⏐Dtl
i (sl − Vtl)

⏐⏐1/4⏐⏐Dtr
j (sr − Vtr )

⏐⏐1/4⏐⏐⏐Dtl
i (sl−Vtl)+Dtr

j (sr−Vtr )
2

⏐⏐⏐1/2
∫

∞

0
exp

(
−ωQ tl,tr

sl,sr

)

× g tl
i (ω, sl − Vtl)g tr

j (ω, sr − Vtr )dµ(ω)

}p

i,j=1

λr

]
≥ 0,
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where g t
i (·, ·) is a density on [0, ∞), for i = 1, . . . , p, and we used the representations of the

normal scale-mixture. The inequality in the last row follows from the fact that the term inside the
expectation is positive definite as explicitly shown in Paciorek and Schervish (2006) and Kleiber
and Nychka (2012, Theorem 1 proofs). □

Proof of Proposition 2. Given a multivariate purely spatial random field Z̃(s), with second-
order nonstationarity, define a multivariate deformed spatio-temporal random field Z(s, t) =[
Z̃1

{
f t1 (s − Vt)

}
, . . . , Z̃p

{
f tp (s − Vt)

}]⊤

, where f ti is a temporally varying spatial deformation, i =

1, . . . , p. The covariance between variable i taken at spatio-temporal location (s1, t1) and variable j
taken at spatio-temporal location (s2, t2) is

cov
{
Zi(s1, t1), Zj(s2, t2)

}
= EV

(
cov

[
Z̃i

{
f t1i (s1 − Vt1)

}
, Z̃j

{
f t2j (s2 − Vt2)

}])
= EV

[
C̃ij

{
∥f t1i (s1 − Vt1) − f t2j (s2 − Vt2) ∥

}]
. □

Proof of the Lagrangian spatio-temporal cross-covariance in Section 8. In the same line of
reasoning as Alegría and Porcu (2017) and Porcu et al. (2018), consider a multivariate purely
spatial stationary random field Z̃(s) on S2. Define a multivariate spatio-temporal random field
Z(s, t) = {Z̃1

(
Rt

1s
)
, . . . , Z̃p

(
Rt

ps
)
}
⊤. The spatio-temporal cross-covariance between variables i and

j taken at spatio-temporal locations (s1, t1), (s2, t2) ∈ S2
× R is

cov
{
Zi(s1, t1), Zj(s2, t2)

}
= ERi,Rj

[
cov

{
Z̃i

(
Rt1

i s1
)
, Z̃j

(
Rt2

j s2
)}]

= ERi,Rj

[
CS
ij

{
dGC (R

t1
i s1,R

t2
j s2)

}]
,

provided that the expectation exists. □
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